Preparation of alumina-supported gold-ruthenium bimetallic catalysts by redox reactions and their activity in preferential CO oxidation Научная публикация
| Журнал |
Applied Catalysis B: Environmental
ISSN: 0926-3373 |
||||||
|---|---|---|---|---|---|---|---|
| Вых. Данные | Год: 2013, Том: 134-135, Страницы: 123-129 Страниц : 7 DOI: 10.1016/j.apcatb.2012.12.039 | ||||||
| Авторы |
|
||||||
| Организации |
|
Реферат:
Lean-burn engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. Recently reported passive NH3-SCR system (PASS)– a simple, low-cost, and urea-free system – has the potential to enable the implementation of lean-burn gasoline engines; however, the system suffers from CO slips during extended rich operations. The slipped CO can be easily oxidized with supplemental oxygen feed over platinum group metal (PGM)-based catalysts; however the PGM-based catalysts simultaneously oxidize the generated NH3. This work focuses on the preparation of catalysts that can preferentially oxidize CO in the presence of NH3. Highly active bimetallic Au-Ru/Al2O3 catalysts were prepared by the method of [AuCl4]− reduction by hydrogen preadsorbed on a parent monometallic Ru/Al2O3 catalyst serving as a carrier. The temperature-programmed reduction studies confirmed a strong interaction between the Au and Ru particles in the samples prepared by this redox method. The average size of crystallites was less than 7 nm and 20 nm for Au and Ru, respectively. The activity of the catalysts was studied in the reaction of oxidation of a mixture of CO with NH3. The catalytic activity in CO oxidation was found to be higher over the bimetallic Au-Ru/Al2O3 catalyst compared to the monometallic Ru/Al2O3 and Au/Al2O3 catalysts. On the contrary, in NH3 oxidation, the bimetallic Au-Ru/Al2O3 catalyst exhibited a decreased activity compared to the relevant monometallic catalysts. Preparation of Au-Ru/Al2O3 samples by the commonly used method of deposition-precipitation with urea resulted in the less catalytically active samples due to the formation of larger Au particles and their separate deposition from Ru.
Библиографическая ссылка:
Kirichenko O.A.
, Redina E.A.
, Davshan N.A.
, Mishin I.V.
, Kapustin G.I.
, Brueva T.R.
, Kustov L.M.
, Li W.
, Kim C.H.
Preparation of alumina-supported gold-ruthenium bimetallic catalysts by redox reactions and their activity in preferential CO oxidation
Applied Catalysis B: Environmental. 2013. V.134-135. P.123-129. DOI: 10.1016/j.apcatb.2012.12.039 WOS Scopus РИНЦ OpenAlex
Preparation of alumina-supported gold-ruthenium bimetallic catalysts by redox reactions and their activity in preferential CO oxidation
Applied Catalysis B: Environmental. 2013. V.134-135. P.123-129. DOI: 10.1016/j.apcatb.2012.12.039 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
| Web of science: | WOS:000316583500015 |
| Scopus: | 2-s2.0-84873806217 |
| РИНЦ: | 20433755 |
| OpenAlex: | W1974028355 |