Sciact
  • EN
  • RU

Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field Научная публикация

Журнал Pharmaceutics
ISSN: 1999-4923
Вых. Данные Год: 2021, Том: 14, Номер: 1, Номер статьи : 65, Страниц : 18 DOI: 10.3390/pharmaceutics14010065
Авторы Burmistrov Ivan A. 1 , Veselov Maxim M. 2 , Mikheev Alexander V. 1,3 , Borodina Tatiana N. 1 , Bukreeva Tatiana V. 1,4 , Chuev Michael A. 5 , Starchikov Sergey S. 1 , Lyubutin Igor S. 1 , Artemov Vladimir V. 1 , Khmelenin Dmitry N. 1 , Klyachko Natalia L. 2,6 , Trushina Daria B. 1,7
Организации
1 Shubnikov Institute of Crystallography of Federal Scientific Research Centre ''Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
2 Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia
3 Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
4 National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
5 Valiev Institute of Physics and Technology of RAS, 117218 Moscow, Russia
6 Institute "Nanotechnology and Nanomaterials", G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
7 Department of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
Реферат: Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.
Библиографическая ссылка: Burmistrov I.A. , Veselov M.M. , Mikheev A.V. , Borodina T.N. , Bukreeva T.V. , Chuev M.A. , Starchikov S.S. , Lyubutin I.S. , Artemov V.V. , Khmelenin D.N. , Klyachko N.L. , Trushina D.B.
Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field
Pharmaceutics. 2021. V.14. N1. 65 :1-18. DOI: 10.3390/pharmaceutics14010065 WOS
Идентификаторы БД:
Web of science: WOS:000746992600001
Альметрики: